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Abstract

The distortion of a two-dimensional bubble (or drop) in a corner of angle 6§, due to
the flow of an inviscid incompressible fluid around it, is examined theoretically. The
flow and the bubble shape are determined as functions of the angle &, the contact angle

8 and the cavitation number Y. The problem is formulated as an integrodifferential
equation for the bubble surface. This equatifnzgeneralizes the integrodifferential
equations derived by Vanden-Broeck and Keller*‘’“. The shape of the bubble is found
approximately by using the slender body theory for bubbles presented by Vanden-Broeck and

Keller?. when Y reaches a critical vaiue v,(8,8), opposite sides of the bubble touch
each other. Two different families of solutiog for Y < Yy, are obtained. In the first

family opposite sides touch at one point. In the second fgmily contact is allowed along a
segment. The methods used to calculate these two families are similar to the ones used by

3

Vanden-Broeck and Keller” and Vanden—Btoeck4.

1. Introduction and formulation

We consider the steady potential flow around a gas bubble or liquid drop in a corner of
angle 6. The contact angle is denoted by B8 (see Figure 1). We shall write “bubble” to.
mean either bubble or drop. We take into account the surface tension ¢ at the interface,
but we ignore the flow ingside the bubble, assuming that the pressure is a constant p),
throughout it.

—> x

Figure 1. Sketch of the bubble and the coordinates

In order to formulate this problem we assume that the complex potential without the

bubble is ﬁ% (x + iy)'/c. where a is a constant and x and y are Cartesian
c2or linates.

]
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We introduce dimensionless variables by choosing (~—5) as the unit length and
=5 pa
20 27-3
u(——i) as the unit velocity. We also introduce the dimensionless potential be¢ and
63
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stream function b¥. Here, b > 0 is a dimensionless constant to be chosen so that

¢ = % and ¢ = - 1 at the stagnation points on the walls y = 0 and y = xtan§,
ti

respe vely. We dgnote the streamline along the two ‘alla and along the bubble boundary

by ¥ = 0. In these variables b(¢ + iv) ~ % (x + iy)? at infinity or, equivalently

s 8

wby " 0
x+ iy ~ (55) (e + iv) (1)
at infinity.

The flow occupies the region ¥ » 0 of the ¢, v plane, and the bubble boundary
corresponds to the segment - % < ¢ < % of the axis ¥ = 0. The problem of finding the
flow consists of determining x + iy as an analytic function of ¢ + iy in the half plane

¥ > 0 satisfying Equation (1) at infinity. Then the bubble surface is given by setting
v=0 in x(¢ + iv) and y(¢ + i¥) and letting ¢ range from -~ % to %. The contact

angle conditions require that the bubble surface meets the walls at the angle B8, which
yields

Zl . { tan 8 as ¢ * %

Xe -tan(B - §) as ¢ * - % .

On the bubble surface the pressure in the fluid, which is given by the Bernoulli
equation, must differ from p, by ok, where k is the curvature of the interface. This
leads to the boundary condition

(2)

oq’ 1 1
Pg =~ 2~ = Pp -0k on -3 <435
Here, pg, ¢ and q are, respectively, the stagnation pressure, the density and the speed

v=0 ., (3)

of the fluid outside the bubble. In dimensionless variables (3) becomes

2 ax- -1 L
q k - Y on 7 < ¢ <5

where Y is the cavitation number defined by

=0, (4)

§
Pp = Py, 2o)2"s (s
Y-—'o—'—‘\——i . )
pa

The problem can be fuirther simplified by requiring the bubble to be symmetric about tho
line y = x tan %. This implies that

. 1
y.(0.0) = y.(-0.0)cosG - x‘(-o.O)san. 0 <¢<35. (6)
By using Equation (6) we can restrict our analysis to the interval 0 < ¢ < %.

2. Reformulation as an integrodifferential equation

It is convenient to reformulate the boundary value problem as an integrodifferential
equation by considering the function
1- & :
v by &
(¢ +14w) Txyg ¢ iy ) - () 3.
which is analytic in the half plane ¥ > 0 and vanishes at infinity as a consequence of
Equation (1). Therefore, on ¢ = 0, its real part is the Hilbert transform of its

imaginary part. The imaginary part vanishes on v = 0, |¢| » % and therefore the Hilbert
transform yields
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We now use the symmetry condition (6) to rowrite (7) in the form

i 2 |8
= .!...__. ' T ] 1
X‘(.,O) ( ) + I (‘ ) Y.(. oo)(’n " + .r + ’

-la

Jae' . (8)

Next we express the boundary condition (4) in terms of x, and Y, noting that

q% = bz(xi + yi)-l. Then (4) becomes
2 Y,Xx - XY
b 1
'—i—'——'i.—iz_!i—ﬁ?-Ya l.|<il *-0- (9)
X * Yy (xyryy)

Now (8) and (9) together constitute a nonlinear integrodifferential equation for y’(o)
in the interval 0 < ¢ ¢ 5. ¥ = 0. The contact angle conditions (2) complete the
formulation of the problem for yo(o,o) and b.

For Y = %, the equation defined hy (8} and (9) reduces to the integrodifferential

equation derived by Vanden-Broeck and Kellerl. ‘rhe particular case 8 = % represents half

of a free bubble.

For Y =8 = %. the equations (8) and (9) reduce tc the integrodifferential equation

derived by Vanden-Broeck and Keller?., This case represents a quarter of a free bubble in a

straining flow.

The integrodifferential equation defined by (8) and (9) can be solved numerically for
arbitrary values ?f 8, Y and & Dby using the numerical procedures described by Vanden-
Broeck and Keller

In the next section,, we shall find the shape of the bubble approximately by using the
slender body theory for bubbles presented by Vanden-Broeck and Kellerl,

3. Slender body approximation

For Y large the bubble tends to an urc of a circle of radius Ybl. As Y decreases

numerical solutions show that the bubble elongates in the direction of the line which
bisects the angle between the two walls. Then it develops a horn or spike which larye
curvature near its end. Finally when Y reachea a critical value YO(B §), opposite

sides of the bubble touch each other. For 8 <« 7 the contact point is at x = y = 0. For

B > % the contact point is away from x = y = 0. Typical profiles for § = n» and
§ = g = % can be found in Vanden-Broeck and Kellerl'2. These profiles were obtained by

solving numerically the integrodifferential equation of Section 2.

For Yy ~ 70(8.6) the bubble is slender. Therefore we shall use the slender body theory

for bubbles presented by Vanden-Broeck and Keller! to get an approximate description of the

flow around the bubble. In the lowest ordez, the flow about a symuetric slender bubble is

approxinated by the flow about a rigid plate lying along the center line of the bubble. In

the present case the center line of the bubble consists of a straight segment of some

length a lying along the line y = x tané/2. We introduce the coordinates x',y' (see

Figure 1) and find the potential be¢(x',y') of the flow about these plates requiring that
.

at infinity Db(e¢ + iv) ~ % (x + iy)x. Evaluating the potential on the plate

y' =0, x' » 0 we obtain
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be(x*,0) = 3 : (10)

By differentiating (10) we find that the flow speed gq on the plate is
2% 2y 2w -1/2

20
q(x*,0) = x' J (a—z - x'—x) . x' 20, (11)

Before using g to get the bubble shape, we ghall determine the length a. We do so by
requiring the suction force F, exerted by the flow on the end of the spike, to balance
the surface tension 20. As we see in Ref. 5 [p. 412, Eq (6.5.4)], F = lpA2/4. Here

A, 1is the coefficient in the expansion b¢ ~ Arl/z cos ; in terms of polar coordinates

with their origin at the end of the plate. Upon setting F = 20 and introducing
dimensionless variables we obtain

a2 =3 (12)
2% -1
From (10) we find A% = 2% a_x ., 8o (12) yields
§
2,2%8
a=(3) . (13)

wWe next use (11) for q in (4) and approximate the curvature k by —nx.x.(x'). Here
the equation of the bubble is y' = n(x'). Then (4) becomes

av _, 2v 2r -1
. 8 (a‘? FOIC) (14)

x'

"\x.

At the end of the spike we require

n(a) = 0. (15)
In addition the contact angle condition yields

n'(a) = -tan(8 - 3) . (16)
Here a is defined by the equation

n(a) = atan % . (17)

The function n(x') is easily obtained by integrating (14) twice with the auxiliary
conditions (15) and (16). 1In the particular case § = %, the result of the integration is
nix') = (a2 - 2)(Y -1)/2 - % ala + x')log(a + x')

- > ala - x')log(a - x') + allog2a + (a - x')tan(8 - %) . (18)

xl
i
2

For §

v, (13) becomes

a= % . (19)

vanden-Broeck and Keller! have shown that the approximate solution (17), (8) ie in fair

agreement with the exact numerical solution of (8) and (9) for 3 ~ % * and v ~ YO(B,!).
For vy < v,.(8,8) (14)-(16) yield unphysical profiles in which opposite sides of the

bubble cross Over. In the next two sections we construct physically acceptable families of

solutions for Yy < YO(B,6). We shall present these results in the important particular
case § = w,

4. Solution with one point of contact

To obtain solutions for y <« vo(l,B) we require the free surface to be in contact with

itself at one point. Then the bubble contains a small sub-bubble near its tip (see Figure
2). We denote by c¢ the x' coordinate of the contact point.

we describe the profile of the bubble by the equations y < ¢ and

=n{x') 0«<x
y' = nz(x') c ¢ x' < a, Then by symmetry we have
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Figure 2. Profile of the bubble with one point of contact for y = Yy
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~ =1,7 and
B = 2¥/3. The vertical scale is the same as the horizontal ccale. The
cavitation number in the sub-bubble is equal to Yo*

-0.2 -0.1 0.1 0.2

Figure 3. Profile of the bubble with one point of contact for Y = -4.5
and B8 = 2w%/3. The vertical scaie is the same as the horizontal

scale. The cavitation number in the sub-bubble is u = =0.6.
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nl(c) - nz(c) =0 (20)

"i(C) = “5(C) =0 . (21)
The conditions (15) and (16) yield

ny{a) =0 (22)

ni(0) = -tan(s - %) . (23)

The functions nl(x') and nz(x') are obtained by integrating (14) twice. The four

constant o! integrations and the value of ¢ have to be evaluated to satisfy the #ix
conditions (20'-(23). This yields a system of six equations with five unknowns. Therefore
we cannot expect this system of equations to have a solution for any value of Y other
than vo(s,ug.
The physical reason why the problem does not have a solution for vy # v ia that it
regquiresd the cavitation number in the sub-bubble to be the same as in the 8ain bubble. It
is to be expected that the cavitation number within the sub-bubble will have some value
other than Yy, which we cannot prescribe. Following the general philosophy of the method

3

used by Vanden-Broeck and Keller~” we shall introduce the unknown cavitation number ¥ in

the interval c < x' < a.
Integrating (14) twice we obtain
n(x') = (a2 - x'?) 1—%—£ - % a{a + x')log(a + x*)

- % a(a - x')log(a - x') + A + Bx' , (24)

X'2) 2—%—£ - % a(a + x')log(a + x°')

- % a(a - x')log{a - x') + E + Dx' ., (25)

nz(x') = (a2 -

Here A, B, E and D are the four constants of integration. Using the six conditions
(20)-(23) we obtain a system of six algebraic equations for the six unknowns A, B, E,

D, ¥ and c¢. This system can easily be solved and yields a unique solution for any vy in
the interval - < y < YO(B,l). Typical profiles for B8 = %1 are shown in Figures 2 and
3. The value of Y is approximately equal to =~-1.7. As Y decreases the size of the

sub-bubble increases and the size of the main bubble decreases. For Y = -», y = -0,39
and the main bubble vanishes. It is interesting to note that the present solution also
exists in the interval Yy <y < Y*., Here Y* is the value of Yy for which n;(c) = 0,

A similar result was found by Vanden-Broeck and Keller3.

The results are summarized in Figure 4. The solution before contact described in
Sections 2 and 3 correspond to the interval Yo ¢ Y ¢ = It is represented by the straight
line u =y 1in Figure 4. The other curve in Figure 4 corresponds to the present
solution. It exists in the interval -= < y < Y*., Therefore there are two possible
solutions ir. the interval Yo €V ¢ Y.

5. Solution with an interval of contact

In this section we derive another solution for vy < v,(8,%) Dby requiring the bubble to
be collapsed between x' = f and x' = g (see Figure 5). We describe the profile of the
bubble by the equations y' = n (x'), 0 < x' < £ and y' = na(x'), g < x' < a. The

functions nl(x') and nz(x') must satisfy the following cofiditions
nz(a) = 0 (26)
n;(0) = -tan(8 - 3) , (27)
n(f) = nz(q) =0, (28)
ni(t) = "i(q) =9, (29)
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Fiqure 4. The cavitation number u as a function of Y.
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Figure 5. Profile of the bubble with one segment of contact for Y = -3.0 and
B = 2w/3. The vertical scale is the same as the horizontal scale.
The values of f and g are respectively 0.19 and 0.47.

The functions n,(x') and n,(x') are obtained by integrating (14) twice. They are

therefore given by the relations (24) and (25). The six constants A, B, E, D, g and f
are found by satisfying the six conditions (26)-(29). We note that the present solution
can be found with the same cavitation number everywhere.

A typical profile for 8§ = %1 is shown in Figure 5. As Y decreases the zires of the

main bubble and of the sub-bubble decrease. Furthermore the length of the contact segment

increases as Y decreases. For Yy = -®, the bubble reduces to a straight segment of
length a lying on the x' axis.

342



o

Py P ————r- - | IR st iosamrsn v sn e« w140+ st @ da + o e Smetah sl

Finally let us mention that the equilibrium of forces require the segment of contact to
be a "film of impurities" characterized by a surface tension equal to 2¢. This is very
unlikely to occur in reality. Therefore the bubble with a segment of contact is physically
unrealistic. However, this mathematical solution is physically relevant to describe the

deformation of an inflated membrane. For details see Vandcn-Broock‘.
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